Edge Assisted Crime Prediction and Evaluation Framework for Machine Learning Algorithms

Edge Assisted Crime Prediction and Evaluation Framework for Machine Learning Algorithms


Price: 8,000 Offer Price: Add to cart

Edge Assisted Crime Prediction and Evaluation Framework for Machine Learning Algorithms



Abstract:

The growing global populations, particularly in major cities, have created new problems, notably in terms of public safety regulation and optimization. As a result, in this paper, a strategy is provided for predicting crime occurrences in a city based on historical events and demographic observation. In particular, this study proposes a crime prediction and evaluation framework for machine learning algorithms of the network edge. Thus, a complete analysis of four distinct sorts of crimes, such as murder, rapid trial, repression of women and children, and narcotics, validates the efficiency of the proposed framework. The complete study and implementation process have shown a visual representation of crime in various areas of country. The total work is completed by the selection, assessment, and implementation of the Machine Learning (ML) model, and finally, proposed the crime prediction. Criminal risk is predicted using classification models for a particular time interval and place. To anticipate occurrences, ML methods such as Decision Trees, Neural Networks, K-Nearest Neighbors, and Impact Learning are being utilized, and their performance is compared based on the data processing and modification used. A maximum accuracy of 81% is obtained for Decision Tree algorithm during the prediction of crime. The findings demonstrate that employing Machine Learning techniques aids in the prediction of criminal events, which has aided in the enhancement of public security.

Attachments


Click Attachments to download papers