A Heterogeneous Ensemble Learning Method For Neuroblastoma Survival Prediction

A Heterogeneous Ensemble Learning Method For Neuroblastoma Survival Prediction


Price: 8,000 Offer Price: Add to cart

A Heterogeneous Ensemble Learning Method For Neuroblastoma Survival Prediction



Abstract:

Neuroblastoma is a pediatric cancer with high morbidity and mortality. Accurate survival prediction of patients with neuroblastoma plays an important role in the formulation of treatment plans. In this study, we proposed a heterogeneous ensemble learning method to predict the survival of neuroblastoma patients and extract decision rules from the proposed method to assist doctors in making decisions. After data preprocessing, five heterogeneous base learners were developed, which consisted of decision tree, random forest, support vector machine based on genetic algorithm, extreme gradient boosting and light gradient boosting machine. Subsequently, a heterogeneous feature selection method was devised to obtain the optimal feature subset of each base learner, and the optimal feature subset of each base learner guided the construction of the base learners as a priori knowledge. Furthermore, an area under curve-based ensemble mechanism was proposed to integrate the five heterogeneous base learners. Finally, the proposed method was compared with mainstream machine learning methods from different indicators, and valuable information was extracted by using the partial dependency plot analysis method and rule-extracted method from the proposed method. Experimental results show that the proposed method achieves an accuracy of 91.64%, recall of 91.14%, and AUC of 91.35% and is significantly better than the mainstream machine learning methods. In addition, interpretable rules with accuracy higher than 0.900 and predicted responses are extracted from the proposed method. Our study can effectively improve the performance of the clinical decision support system to improve the survival of neuroblastoma patients

Attachments


Click Attachments to download papers