info@itechprosolutions.in | +91 9790176891

DOT NET 2013 Projects

Category Archives

Secure Mining of Association Rules in Horizontally Distributed Databases

ABSTRACT:

We propose a protocol for secure mining of association rules in horizontally distributed databases. The current leading protocol is that of Kantarcioglu and Clifton. Our protocol, like theirs, is based on the Fast Distributed Mining (FDM) algorithm of Cheung et al. which is an unsecured distributed version of the Apriori algorithm. The main ingredients in our protocol are two novel secure multi-party algorithms — one that computes the union of private subsets that each of the interacting players hold, and another that tests the inclusion of an element held by one player in a subset held by another. Our protocol offers enhanced privacy with respect to the protocol. In addition, it is simpler and is significantly more efficient in terms of communication rounds, communication cost and computational cost.

DOWNLOAD.


Dynamic Audit Services for Outsourced Storages in Clouds

ABSTRACT:

In this paper, we propose a dynamic audit service for verifying the integrity of an untrusted and outsourced storage. Our audit service is constructed based on the techniques, fragment structure, random sampling, and index-hash table, supporting provable updates to outsourced data and timely anomaly detection. In addition, we propose a method based on probabilistic query and periodic verification for improving the performance of audit services. Our experimental results not only validate the effectiveness of our approaches, but also show our audit system verifies the integrity with lower computation overhead and requiring less extra storage for audit metadata.

DOWNLOAD.


Cost-Based Optimization of Service Compositions

ABSTRACT:

For providers of composite services, preventing cases of SLA violations is crucial. Previous work has established runtime adaptation of compositions as a promising tool to achieve SLA conformance. However, to get a realistic and complete view of the decision process of service providers, the costs of adaptation need to be taken into account. In this paper, we formalize the problem of finding the optimal set of adaptations, which minimizes the total costs arising from SLA violations and the adaptations to prevent them. We present possible algorithms to solve this complex optimization problem, and detail an end-to-end system based on our earlier work on the PREvent (prediction and prevention based on event monitoring) framework, which clearly indicates the usefulness of our model. We discuss experimental results that show how the application of our approach leads to reduced costs for the service provider, and explain the circumstances in which different algorithms lead to more or less satisfactory results.

DOWNLOAD.


Attribute-Aware Data Aggregation Using Potential-Based Dynamic Routing in Wireless Sensor Networks

ABSTRACT:

The resources especially energy in wireless sensor networks (WSNs) are quite limited. Since sensor nodes are usually much dense, data sampled by sensor nodes have much redundancy, data aggregation becomes an effective method to eliminate redundancy, minimize the number of transmission, and then to save energy. Many applications can be deployed in WSNs and various sensors are embedded in nodes, the packets generated by heterogenous sensors or different applications have different attributes. The packets from different applications cannot be aggregated. Otherwise, most data aggregation schemes employ static routing protocols, which cannot dynamically or intentionally forward packets according to network state or packet types. The spatial isolation caused by static routing protocol is unfavorable to data aggregation. To make data aggregation more efficient, in this paper, we introduce the concept of packet attribute, defined as the identifier of the data sampled by different kinds of sensors or applications, and then propose an attribute-aware data aggregation (ADA) scheme consisting of a packet-driven timing algorithm and a special dynamic routing protocol. Inspired by the concept of potential in physics and pheromone in ant colony, a potential-based dynamic routing is elaborated to support an ADA strategy. The performance evaluation results in series of scenarios verify that the ADA scheme can make the packets with the same attribute spatially convergent as much as possible and therefore improve the efficiency of data aggregation. Furthermore, the ADA scheme also offers other properties, such as scalable with respect to network size and adaptable for tracking mobile events.

DOWNLOAD.


Beyond Text QA: Multimedia Answer Generation by Harvesting Web Information

ABSTRACT:

Community question answering (cQA) services have gained popularity over the past years. It not only allows community members to post and answer questions but also enables general users to seek information from a comprehensive set of well-answered questions. However, existing cQA forums usually provide only textual answers, which are not informative enough for many questions. In this paper, we propose a scheme that is able to enrich textual answers in cQA with appropriate media data. Our scheme consists of three components: answer medium selection, query generation for multimedia search, and multimedia data selection and presentation. This approach automatically determines which type of media information should be added for a textual answer. It then automatically collects data from the web to enrich the answer. By processing a large set of QA pairs and adding them to a pool, our approach can enable a novel multimedia question answering (MMQA) approach as users can find multimedia answers by matching their questions with those in the pool. Different from a lot of MMQA research efforts that attempt to directly answer questions with image and video data, our approach is built based on community-contributed textual answers and thus it is able to deal with more complex questions. We have conducted extensive experiments on a multi-source QA dataset. The results demonstrate the effectiveness of our approach.

DOWNLOAD.


Secure Mining of Association Rules in Horizontally Distributed Databases

ABSTRACT:

We propose a protocol for secure mining of association rules in horizontally distributed databases. The current leading protocol is that of Kantarcioglu and Clifton. Our protocol, like theirs, is based on the Fast Distributed Mining (FDM) algorithm of Cheung et al. which is an unsecured distributed version of the Apriori algorithm. The main ingredients in our protocol are two novel secure multi-party algorithms — one that computes the union of private subsets that each of the interacting players hold, and another that tests the inclusion of an element held by one player in a subset held by another. Our protocol offers enhanced privacy with respect to the protocol. In addition, it is simpler and is significantly more efficient in terms of communication rounds, communication cost and computational cost.

DOWNLOAD.


Supporting Search-As-You-Type Using SQL in Databases

ABSTRACT:

A search-as-you-type system computes answers on-the-fly as a user types in a keyword query character by character. We study how to support search-as-you-type on data residing in a relational DBMS. We focus on how to support this type of search using the native database language, SQL. A main challenge is how to leverage existing database functionalities to meet the high performance requirement to achieve an interactive speed. We study how to use auxiliary indexes stored as tables to increase search performance. We present solutions for both single-keyword queries and multi keyword queries, and develop novel techniques for fuzzy search using SQL by allowing mismatches between query keywords and answers. We present techniques to answer first-N queries and discuss how to support updates efficiently. Experiments on large, real data sets show that our techniques enable DBMS systems on a commodity computer to support search-as-you-type on tables with millions of records.

DOWNLOAD.


A Proxy-Based Approach to Continuous Location-Based Spatial Queries in Mobile Environments

ABSTRACT:

Caching valid regions of spatial queries at mobile clients is effective in reducing the number of queries submitted by mobile clients and query load on the server. However, mobile clients suffer from longer waiting time for the server to compute valid regions. We propose in this paper a proxy-based approach to continuous nearest-neighbor (NN) and window queries. The proxy creates estimated valid regions (EVRs) for mobile clients by exploiting spatial and temporal locality of spatial queries. For NN queries, we devise two new algorithms to accelerate EVR growth, leading the proxy to build effective EVRs even when the cache size is small. On the other hand, we propose to represent the EVRs of window queries in the form of vectors, called estimated window vectors (EWVs), to achieve larger estimated valid regions. This novel representation and the associated creation algorithm result in more effective EVRs of window queries. In addition, due to the distinct characteristics, we use separate index structures, namely EVR-tree and grid index, for NN queries and window queries, respectively. To further increase efficiency, we develop algorithms to exploit the results of NN queries to aid grid index growth, benefiting EWV creation of window queries. Similarly, the grid index is utilized to support NN query answering and EVR updating. We conduct several experiments for performance evaluation. The experimental results show that the proposed approach significantly outperforms the existing proxy-based approaches.

DOWNLOAD.


Privacy Preserving Delegated Access Control in Public Clouds

ABSTRACT:

Current approaches to enforce fine-grained access control on confidential data hosted in the cloud are based on fine-grained encryption of the data. Under such approaches, data owners are in charge of encrypting the data before uploading them on the cloud and re-encrypting the data whenever user credentials change. Data owners thus incur high communication and computation costs. A better approach should delegate the enforcement offline-grained access control to the cloud, so to minimize the overhead at the data owners, while assuring data confidentiality from the cloud. We propose an approach, based on two layers of encryption that addresses such requirement. Under our approach, the data owner performs a coarse-grained encryption, whereas the cloud performs a fine-grained encryption on top of the owner encrypted data. A challenging issue is how to decompose access control policies (ACPs) such that the two layer encryption can be performed. We show that this problem is NP-complete and propose novel optimization algorithms. We utilize an efficient group key management scheme that supports expressive ACPs. Our system assures the confidentiality of the data and preserves the privacy of users from the cloud while delegating most of the access control enforcement to the cloud.

DOWNLOAD.


Cloud FTP: A Case Study of Migrating Traditional Applications to the Cloud

ABSTRACT:

The cloud computing is growing rapidly for it offers on-demand computing power and capacity. The power of cloud enables dynamic scalability of applications facing various business requirements. However, challenges arise when considering the large amount of existing applications. In this work we propose to move the traditional FTP service to the cloud. We implement FTP service on Windows Azure Platform along with the auto-scaling cloud feature. Based on this, we implement a benchmark to measure the performance of our Cloud FTP. This case study illustrates the potential benefits and technical issues associated with the migration of the traditional applications to the clouds.

DOWNLOAD.


Attribute-Based Access to Scalable Media in Cloud-Assisted Content Sharing Networks

ABSTRACT:

This paper presents a novel Multi-message Ciphertext Policy Attribute-Based Encryption (MCP-ABE) technique, and employs the MCP-ABE to design an access control scheme for sharing scalable media based on data consumers’ attributes (e.g., age, nationality, or gender)rather than an explicit list of the consumers’ names. The scheme is efficient and flexible because MCP-ABE allows a content provider to specify an access policy and encrypt multiple messages within one Ciphertext such that only the users whose attributes satisfy the access policy can decrypt the Ciphertext. Moreover, the paper shows how to support resource-limited mobile devices by offloading computational intensive operations to cloud servers while without compromising data privacy

DOWNLOAD

.


A Log-based Approach to Make Digital Forensics Easier on Cloud Computing

ABSTRACT:

Cloud computing is getting more and more attention from the information and communication technologies industry recently. Almost all the leading companies of the information area show their interesting and efforts on cloud computing and release services about cloud computing in succession. But if want to make it go further, we should pay more effort on security issues. Especially, the Internet environment now has become more and more unsecure. With the popularization of computers and intelligent devices, the number of crime on them has increased rapidly in last decades, and will be quicker on the cloud computing environment in future. No wall is wall in the world. We should enhance the cloud computing not only at the aspect of precaution, but also at the aspect of dealing with the security events to defend it from crime activities. In this paper, we propose an approach which using logs model to building a forensic-friendly system. Using this model we can quickly gather information from cloud computing for some kinds of forensic purpose. And this will decrease the complexity of those kinds of forensics.

DOWNLOAD.


Toward Accurate Mobile Sensor Network Localization in Noisy Environments

ABSTRACT:

The node localization problem in mobile sensor networks has received significant attention. Recently, particle filters adapted from robotics have produced good localization accuracies in conventional settings. In spite of these successes, state-of-theart solutions suffer significantly when used in challenging indoor and mobile environments characterized by a high degree of radio signal irregularity. New solutions are needed to address these challenges. We propose a fuzzy logic-based approach for mobile node localization in challenging environments. Localization is formulated as a fuzzy multilateration problem. For sparse networks with few available anchors, we propose a fuzzy grid-prediction scheme. The fuzzy logic-based localization scheme is implemented in a simulator and compared to state-of-the-art solutions. Extensive simulation results demonstrate improvements in the localization accuracy from 20 to 40 percent when the radio irregularity is high. A hardware implementation running on Epic motes and transported by iRobot mobile hosts confirms simulation results and extends them to the real world.

DOWNLOAD.


On Quality of Monitoring for Multi-channel Wireless Infrastructure Networks

ABSTRACT:

Passive monitoring utilizing distributed wireless sniffers is an effective technique to monitor activities in wireless infrastructure networks for fault diagnosis, resource management and critical path analysis. In this paper, we introduce a quality of monitoring (QoM) metric defined by the expected number of active users monitored, and investigate the problem of maximizing QoM by judiciously assigning sniffers to channels based on the knowledge of user activities in a multi-channel wireless network. Two types of capture models are considered. The user-centric model assumes frame-level capturing capability of sniffers such that the activities of different users can be distinguished while the sniffer-centric model only utilizes the binary channel information (active or not) at a sniffer. For the user-centric model, we show that the implied optimization problem is NP-hard, but a constant approximation ratio can be attained via polynomial complexity algorithms. For the sniffer-centric model, we devise stochastic inference schemes to transform the problem into the user-centric domain, where we are able to apply our polynomial approximation algorithms. The effectiveness of our proposed schemes and algorithms is further evaluated using both synthetic data as well as real-world traces from an operational WLAN.

DOWNLOAD.


Target Tracking and Mobile Sensor Navigation in Wireless Sensor Networks

ABSTRACT:

This work studies the problem of tracking signal-emitting mobile targets using navigated mobile sensors based on signal reception. Since the mobile target’s maneuver is unknown, the mobile sensor controller utilizes the measurement collected by a wireless sensor network in terms of the mobile target signal’s time of arrival (TOA). The mobile sensor controller acquires the TOA measurement information from both the mobile target and the mobile sensor for estimating their locations before directing the mobile sensor’s movement to follow the target. We propose a min-max approximation approach to estimate the location for tracking which can be efficiently solved via semi definite programming (SDP) relaxation, and apply a cubic function for mobile sensor navigation. We estimate the location of the mobile sensor and target jointly to improve the tracking accuracy. To further improve the system performance, we propose a weighted tracking algorithm by using the measurement information more efficiently. Our results demonstrate that the proposed algorithm provides good tracking performance and can quickly direct the mobile sensor to follow the mobile target.

DOWNLOAD.


Network-Assisted Mobile Computing with Optimal Uplink Query Processing

ABSTRACT:

Many mobile applications retrieve content from remote servers via user generated queries. Processing these queries is often needed before the desired content can be identified. Processing the request on the mobile devices can quickly sap the limited battery resources. Conversely, processing user queries at remote servers can have slow response times due communication latency incurred during transmission of the potentially large query. We evaluate a network-assisted mobile computing scenario where mid-network nodes with “leasing” capabilities are deployed by a service provider. Leasing computation power can reduce battery usage on the mobile devices and improve response times. However, borrowing processing power from mid-network nodes comes at a leasing cost which must be accounted for when making the decision of where processing should occur. We study the tradeoff between battery usage, processing and transmission latency, and mid-network leasing. We use the dynamic programming framework to solve for the optimal processing policies that suggest the amount of processing to be done at each mid-network node in order to minimize the processing and communication latency and processing costs. Through numerical studies, we examine the properties of the optimal processing policy and the core tradeoffs in such systems

DOWNLOAD.


Mobi-Sync: Efficient Time Synchronization for Mobile Underwater Sensor Networks

ABSTRACT:

Time synchronization is an important requirement for many services provided by distributed networks. A lot of time synchronization protocols have been proposed for terrestrial Wireless Sensor Networks (WSNs). However, none of them can be directly applied to Underwater Sensor Networks (UWSNs). A synchronization algorithm for UWSNs must consider additional factors such as long propagation delays from the use of acoustic communication and sensor node mobility. These unique challenges make the accuracy of synchronization procedures for UWSNs even more critical. Time synchronization solutions specifically designed for UWSNs are needed to satisfy these new requirements. This paper proposes Mobi-Sync, a novel time synchronization scheme for mobile underwater sensor networks. Mobi-Sync distinguishes itself from previous approaches for terrestrial WSN by considering spatial correlation among the mobility patterns of neighboring UWSNs nodes. This enables Mobi-Sync to accurately estimate the long dynamic propagation delays. Simulation results show that Mobi-Sync outperforms existing schemes in both accuracy and energy efficiency.

DOWNLOAD.


Detection and Localization of Multiple Spoofing Attackers in Wireless Networks

ABSTRACT:

Wireless spoofing attacks are easy to launch and can significantly impact the performance of networks. Although the identity of a node can be verified through cryptographic authentication, conventional security approaches are not always desirable because of their overhead requirements. In this paper, we propose to use spatial information, a physical property associated with each node, hard to falsify, and not reliant on cryptography, as the basis for 1) detecting spoofing attacks; 2) determining the number of attackers when multiple adversaries masquerading as the same node identity; and 3) localizing multiple adversaries. We propose to use the spatial correlation of received signal strength (RSS) inherited from wireless nodes to detect the spoofing attacks. We then formulate the problem of determining the number of attackers as a multiclass detection problem. Cluster-based mechanisms are developed to determine the number of attackers. When the training data are available, we explore using the Support Vector Machines (SVM) method to further improve the accuracy of determining the number of attackers. In addition, we developed an integrated detection and localization system that can localize the positions of multiple attackers. We evaluated our techniques through two test beds using both an 802.11 (WiFi) network and an 802.15.4 (ZigBee) network in two real office buildings. Our experimental results show that our proposed methods can achieve over 90 percent Hit Rate and Precision when determining the number of attackers. Our localization results using a representative set of algorithms provide strong evidence of high accuracy of localizing multiple adversaries.

DOWNLOAD.


Noise Reduction Based on Partial-Reference, Dual-Tree Complex Wavelet Transform Shrinkage

ABSTRACT:

This paper presents a novel way to reduce noise introduced or exacerbated by image enhancement methods, in particular algorithms based on the random spray sampling technique, but not only. According to the nature of sprays, output images of spray-based methods tend to exhibit noise with unknown statistical distribution. To avoid inappropriate assumptions on the statistical characteristics of noise, a different one is made. In fact, the non-enhanced image is considered to be either free of noise or affected by non-perceivable levels of noise. Taking advantage of the higher sensitivity of the human visual system to changes in brightness, the analysis can be limited to the luma channel of both the non-enhanced and enhanced image. Also, given the importance of directional content in human vision, the analysis is performed through the dual-tree complex wavelet transform (DTWCT). Unlike the discrete wavelet transform, the DTWCT allows for distinction of data directionality in the transform space. For each level of the transform, the standard deviation of the non-enhanced image coefficients is computed across the six orientations of the DTWCT, then it is normalized. The result is a map of the directional structures present in the non-enhanced image. Said map is then used to shrink the coefficients of the enhanced image. The shrunk coefficients and the coefficients from the non-enhanced image are then mixed according to data directionality. Finally, a noise-reduced version of the enhanced image is computed via the inverse transforms. A thorough numerical analysis of the results has been performed in order to confirm the validity of the proposed approach.

DOWNLOAD.


Local Directional Number Pattern for Face Analysis: Face and Expression Recognition

ABSTRACT:

This paper proposes a novel local feature descriptor, local directional number pattern (LDN), for face analysis, i.e., face and expression recognition. LDN encodes the directional information of the face’s textures (i.e., the texture’s structure) in a compact way, producing a more discriminative code than current methods. We compute the structure of each micro-pattern with the aid of a compass mask that extracts directional information, and we encode such information using the prominent direction indices (directional numbers) and sign—which allows us to distinguish among similar structural patterns that have different intensity transitions. We divide the face into several regions, and extract the distribution of the LDN features from them. Then, we concatenate these features into a feature vector, and we use it as a face descriptor. We perform several experiments in which our descriptor performs consistently under illumination, noise, expression, and time lapse variations. Moreover, we test our descriptor with different masks to analyze its performance in different face analysis tasks

DOWNLOAD.


Reversible Watermarking Based on Invariant Image Classification and Dynamic Histogram Shifting

ABSTRACT:

In this paper, we propose a new reversible watermarking scheme. One first contribution is a histogram shifting modulation which adaptively takes care of the local specificities of the image content. By applying it to the image prediction-errors and by considering their immediate neighborhood, the scheme we propose inserts data in textured areas where other methods fail to do so. Furthermore, our scheme makes use of a classification process for identifying parts of the image that can be watermarked with the most suited reversible modulation. This classification is based on a reference image derived from the image itself, a prediction of it, which has the property of being invariant to the watermark insertion. In that way, the watermark embedder and extractor remain synchronized for message extraction and image reconstruction. The experiments conducted so far, on some natural images and on medical images from different modalities, show that for capacities smaller than 0.4 bpp, our method can insert more data with lower distortion than any existing schemes. For the same capacity, we achieve a peak signal-to-noise ratio (PSNR) of about 1–2 dB greater than with the scheme of Hwang et al., the most efficient approach actually.

DOWNLOAD.


Reversible Data Hiding With Optimal Value Transfer

ABSTRACT:

In reversible data hiding techniques, the values of host data are modified according to some particular rules and the original host content can be perfectly restored after extraction of the hidden data on receiver side. In this paper, the optimal rule of value modification under a payload-distortion criterion is found by using an iterative procedure, and a practical reversible data hiding scheme is proposed. The secret data, as well as the auxiliary information used for content recovery, are carried by the differences between the original pixel-values and the corresponding values estimated from the neighbors. Here, the estimation errors are modified according to the optimal value transfer rule. Also, the host image is divided into a number of pixel subsets and the auxiliary information of a subset is always embedded into the estimation errors in the next subset. A receiver can successfully extract the embedded secret data and recover the original content in the subsets with an inverse order. This way, a good reversible data hiding performance is achieved.

DOWNLOAD.


Query-Adaptive Image Search With Hash Codes

ABSTRACT:

Scalable image search based on visual similarity has been an active topic of research in recent years. State-of-the-art solutions often use hashing methods to embed high-dimensional image features into Hamming space, where search can be performed in real-time based on Hamming distance of compact hash codes. Unlike traditional metrics (e.g., Euclidean) that offer continuous distances, the Hamming distances are discrete integer values. As a consequence, there are often a large number of images sharing equal Hamming distances to a query, which largely hurts search results where fine-grained ranking is very important. This paper introduces an approach that enables query-adaptive ranking of the returned images with equal Hamming distances to the queries. This is achieved by firstly offline learning bitwise weights of the hash codes for a diverse set of predefined semantic concept classes. We formulate the weight learning process as a quadratic programming problem that minimizes intra-class distance while preserving inter-class relationship captured by original raw image features. Query-adaptive weights are then computed online by evaluating the proximity between a query and the semantic concept classes. With the query-adaptive bitwise weights, returned images can be easily ordered by weighted Hamming distance at a finer-grained hash code level rather than the original Hamming distance level. Experiments on a Flickr image dataset show clear improvements from our proposed approach.

DOWNLOAD.


Relay Selection for Geographical Forwarding in Sleep-Wake Cycling Wireless Sensor Networks

ABSTRACT:

Our work is motivated by geographical forwarding of sporadic alarm packets to a base station in a wireless sensor network (WSN), where the nodes are sleep-wake cycling periodically and asynchronously. We seek to develop local forwarding algorithms that can be tuned so as to tradeoff the end-to-end delays against a total cost, such as the hop count or total energy. Our approach is to solve, at each forwarding node enroute to the sink, the local forwarding problem of minimizing one-hop waiting delay subject to a lower bound constraint on a suitable reward offered by the next-hop relay; the constraint serves to tune the tradeoff. The reward metric used for the local problem is based on the end-to-end total cost objective (for instance, when the total cost is hop count, we choose to use the progress toward sink made by a relay as the reward). The forwarding node, to begin with, is uncertain about the number of relays, their wake-up times, and the reward values, but knows the probability distributions of these quantities. At each relay wake-up instant, when a relay reveals its reward value, the forwarding node’s problem is to forward the packet or to wait for further relays to wake-up. In terms of the operations research literature, our work can be considered as a variant of the asset selling problem. We formulate our local forwarding problem as a partially observable Markov decision process (POMDP) and obtain inner and outer bounds for the optimal policy. Motivated by the computational complexity involved in the policies derived out of these bounds, we formulate an alternate simplified model, the optimal policy for which is a simple threshold rule. We provide simulation results to compare the performance of the inner and outer bound policies against the simple policy, and also against the optimal policy when the source knows the exact number of relays. Observing the good performance and the ease of implementation of the simple policy, we apply it to our motivating problem, i.e., local geographical routing of sporadic alarm packets in a large WSN. We compare the end-to-end performance (i.e., average total delay and average total cost) obtained by the simple policy, when used for local geographical forwarding, against that obtained by the globally optimal forwarding algorithm proposed by Kim et al.

DOWNLOAD.


Optimal Multicast Capacity and Delay Tradeoffs in MANETs

ABSTRACT:

In this paper, we give a global perspective of multicast capacity and delay analysis in Mobile Ad Hoc Networks (MANETs). Specifically, we consider four node mobility models: (1) two-dimensional i.i.d. mobility, (2) two-dimensional hybrid random walk, (3) one-dimensional i.i.d. mobility, and (4) one-dimensional hybrid random walk. Two mobility time-scales are investigated in this paper: (i) Fast mobility where node mobility is at the same time-scale as data transmissions; (ii) Slow mobility where node mobility is assumed to occur at a much slower time-scale than data transmissions. Given a delay constraint D, we first characterize the optimal multicast capacity for each of the eight types of mobility models, and then we develop a scheme that can achieve a capacity-delay tradeoff close to the upper bound up to a logarithmic factor. In addition, we also study heterogeneous networks with infrastructure support.

DOWNLOAD.


EMAP: Expedite Message Authentication Protocol for Vehicular Ad Hoc Networks

ABSTRACT:

Vehicular ad hoc networks (VANETs) adopt the Public Key Infrastructure (PKI) and Certificate Revocation Lists (CRLs) for their security. In any PKI system, the authentication of a received message is performed by checking if the certificate of the sender is included in the current CRL, and verifying the authenticity of the certificate and signature of the sender. In this paper, we propose an Expedite Message Authentication Protocol (EMAP) for VANETs, which replaces the time-consuming CRL checking process by an efficient revocation checking process. The revocation check process in EMAP uses a keyed Hash Message Authentication Code (HMAC), where the key used in calculating the HMAC is shared only between non revoked On-Board Units (OBUs). In addition, EMAP uses a novel probabilistic key distribution, which enables non revoked OBUs to securely share and update a secret key. EMAP can significantly decrease the message loss ratio due to the message verification delay compared with the conventional authentication methods employing CRL. By conducting security analysis and performance evaluation, EMAP is demonstrated to be secure and efficient.

DOWNLOAD.


Cooperative Packet Delivery in Hybrid Wireless Mobile Networks: A Coalitional Game Approach

ABSTRACT:

We consider the problem of cooperative packet delivery to mobile nodes in a hybrid wireless mobile network, where both infrastructure-based and infrastructure-less (i.e., ad hoc mode or peer-to-peer mode) communications are used. We propose a solution based on a coalition formation among mobile nodes to cooperatively deliver packets among these mobile nodes in the same coalition. A coalitional game is developed to analyze the behavior of the rational mobile nodes for cooperative packet delivery. A group of mobile nodes makes a decision to join or to leave a coalition based on their individual payoffs. The individual payoff of each mobile node is a function of the average delivery delay for packets transmitted to the mobile node from a base station and the cost incurred by this mobile node for relaying packets to other mobile nodes. To find the payoff of each mobile node, a Markov chain model is formulated and the expected cost and packet delivery delay are obtained when the mobile node is in a coalition. Since both the expected cost and packet delivery delay depend on the probability that each mobile node will help other mobile nodes in the same coalition to forward packets to the destination mobile node in the same coalition, a bargaining game is used to find the optimal helping probabilities. After the payoff of each mobile node is obtained, we find the solutions of the coalitional game which are the stable coalitions. A distributed algorithm is presented to obtain the stable coalitions and a Markov-chain-based analysis is used to evaluate the stable coalitional structures obtained from the distributed algorithm. Performance evaluation results show that when the stable coalitions are formed, the mobile nodes achieve a nonzero payoff (i.e., utility is higher than the cost). With a coalition formation, the mobile nodes achieve higher payoff than that when each mobile node acts alone.

DOWNLOAD.


Adaptive Position Update for Geographic Routing in Mobile Ad Hoc Networks

ABSTRACT:

In geographic routing, nodes need to maintain up-to-date positions of their immediate neighbors for making effective forwarding decisions. Periodic broadcasting of beacon packets that contain the geographic location coordinates of the nodes is a popular method used by most geographic routing protocols to maintain neighbor positions. We contend and demonstrate that periodic beaconing regardless of the node mobility and traffic patterns in the network is not attractive from both update cost and routing performance points of view. We propose the Adaptive Position Update (APU) strategy for geographic routing, which dynamically adjusts the frequency of position updates based on the mobility dynamics of the nodes and the forwarding patterns in the network. APU is based on two simple principles: 1) nodes whose movements are harder to predict update their positions more frequently (and vice versa), and (ii) nodes closer to forwarding paths update their positions more frequently (and vice versa). Our theoretical analysis, which is validated by NS2 simulations of a well-known geographic routing protocol, Greedy Perimeter Stateless Routing Protocol (GPSR), shows that APU can significantly reduce the update cost and improve the routing performance in terms of packet delivery ratio and average end-to-end delay in comparison with periodic beaconing and other recently proposed updating schemes. The benefits of APU are further confirmed by undertaking evaluations in realistic network scenarios, which account for localization error, realistic radio propagation, and sparse network.

DOWNLOAD.


Multicast Capacity in MANET with Infrastructure Support

ABSTRACT:

We study the multicast capacity under a network model featuring both node’s mobility and infrastructure support. Combinations between mobility and infrastructure, as well as multicast transmission and infrastructure, have already been showed effective ways to increase it. In this work, we jointly consider the impact of the above three factors on network capacity. We assume that m static base stations and n mobile users are placed in an ad hoc network. A general mobility model is adopted, such that each user moves within a bounded distance from its home-point with an arbitrary pattern. In addition, each mobile node serves as a source of multicast transmission, which results in a total number of n multicast transmissions. We focus on the situations in which base stations actually benefit the capacity improvement, and find that multicast capacity in a mobile hybrid network falls into several regimes. For each regime, reachable upper and lower bounds are derived. Our work contains theoretical analysis of multicast capacity in hybrid networks and provides guidelines for the design of real hybrid system combing cellular and ad hoc networks.

DOWNLOAD.


Resource Allocation for QoS Support in Wireless Mesh Networks

ABSTRACT:

Many next generation applications (such as video flows) are likely to have associated minimum data rate requirements in order to ensure satisfactory quality as perceived by end-users. In this paper, we develop a framework to address the problem of maximizing the aggregate utility of traffic flows in a multi-hop wireless network, with constraints imposed both due to self-interference and minimum rate requirements. The parameters that are tuned in order to maximize the utility are (i) transmission powers of individual nodes and (ii) the channels assigned to the different communication links. Our framework is based on using across-decomposition technique that takes both inter-flow interference and self-interference into account. The output of our framework is a schedule that dictates what links are to be activated in each slot and the parameters associated with each of those links. If the minimum rate constraint cannot be satisfied for all of the flows, the framework intelligently rejects a sub-set of the flows and recomputes a schedule for the remaining flows. We also design an admission control module that determines if new flows can be admitted without violating the rate requirements of the existing flows in the network. We provide numerical results to demonstrate the efficacy of our framework.

DOWNLOAD.


Localization of Wireless Sensor Networks in the Wild: Pursuit of Ranging Quality

ABSTRACT:

Localization is a fundamental issue of wireless sensor networks that has been extensively studied in the literature. Our real-world experience from GreenOrbs, a sensor network system deployed in a forest, shows that localization in the wild remains very challenging due to various interfering factors. In this paper, we propose CDL, a Combined and Differentiated Localization approach for localization that exploits the strength of range-free approaches and range-based approaches using received signal strength indicator (RSSI). A critical observation is that ranging quality greatly impacts the overall localization accuracy. To achieve a better ranging quality, our method CDL incorporates virtual-hop localization, local filtration, and ranging-quality aware calibration. We have implemented and evaluated CDL by extensive real-world experiments in GreenOrbs and large-scale simulations. Our experimental and simulation results demonstrate that CDL outperforms current state-of-art localization approaches with a more accurate and consistent performance. For example, the average location error using CDL in GreenOrbs system is 2.9 m, while the previous best method SISR has an average error of 4.6 m.

DOWNLOAD.


Efficient Algorithms for Neighbor Discovery in Wireless Networks

ABSTRACT:

Neighbor discovery is an important first step in the initialization of a wireless ad hoc network. In this paper, we design and analyze several algorithms for neighbor discovery in wireless networks. Starting with a single-hop wireless network of nodes, we propose a ALOHA-like neighbor discovery algorithm when nodes cannot detect collisions, and an order-optimal receiver feedback-based algorithm when nodes can detect collisions. Our algorithms neither require nodes to have a priori estimates of the number of neighbors nor synchronization between nodes. Our algorithms allow nodes to begin execution at different time instants and to terminate neighbor discovery upon discovering all their neighbors. We finally show that receiver feedback can be used to achieve a running time, even when nodes cannot detect collisions. We then analyze neighbor discovery in a general multihop setting. We establish an upper bound of on the running time of the ALOHA-like algorithm, where denotes the maximum node degree in the network and the total number of nodes. We also establish a lower bound of on the running time of any randomized neighbor discovery algorithm. Our result thus implies that the ALOHA-like algorithm is at most a factor worse than optimal.

DOWNLOAD.


BAHG: Back-Bone-Assisted Hop Greedy Routing for VANET’s City Environments

ABSTRACT:

Using advanced wireless local area network technologies, vehicular ad hoc networks (VANETs) have become viable and valuable for their wide variety of novel applications, such as road safety, multimedia content sharing, commerce on wheels, etc. Multihop information dissemination in VANETs is constrained by the high mobility of vehicles and the frequent disconnections. Currently, geographic routing protocols are widely adopted for VANETs as they do not require route construction and route maintenance phases. Again, with connectivity awareness, they perform well in terms of reliable delivery. To obtain destination position, some protocols use flooding, which can be detrimental in city environments? Further, in the case of sparse and void regions, frequent use of the recovery strategy elevates hop count. Some geographic routing protocols adopt the minimum weighted algorithm based on distance or connectivity to select intermediate intersections. However, the shortest path or the path with higher connectivity may include numerous intermediate intersections. As a result, these protocols yield routing paths with higher hop count. In this paper, we propose a hop greedy routing scheme that yields a routing path with the minimum number of intermediate intersection nodes while taking connectivity into consideration. Moreover, we introduce back-bone nodes that play a key role in providing connectivity status around an intersection. Apart from this, by tracking the movement of source as well as destination, the back-bone nodes enable a packet to be forwarded in the changed direction. Simulation results signify the benefits of the proposed routing strategy in terms of high packet delivery ratio and shorter end-to-end delay

DOWNLOAD.


An Efficient and Robust Addressing Protocol for Node Auto configuration in Ad Hoc Networks

ABSTRACT:

Address assignment is a key challenge in ad hoc networks due to the lack of infrastructure. Autonomous addressing protocols require a distributed and self-managed mechanism to avoid address collisions in a dynamic network with fading channels, frequent partitions, and joining/leaving nodes. We propose and analyze a lightweight protocol that configures mobile ad hoc nodes based on a distributed address database stored in filters that reduces the control load and makes the proposal robust to packet losses and network partitions. We evaluate the performance of our protocol, considering joining nodes, partition merging events, and network initialization. Simulation results show that our protocol resolves all the address collisions and also reduces the control traffic when compared to previously proposed protocols.

DOWNLOAD.


A Highly Scalable Key Pre-Distribution Scheme for Wireless Sensor Networks

ABSTRACT:

Given the sensitivity of the potential WSN applications and because of resource limitations, key management emerges as a challenging issue for WSNs. One of the main concerns when designing a key management scheme is the network scalability. Indeed, the protocol should support a large number of nodes to enable a large scale deployment of the network. In this paper, we propose a new scalable key management scheme for WSNs which provides a good secure connectivity coverage. For this purpose, we make use of the unital design theory. We show that the basic mapping from unitals to key pre-distribution allows us to achieve high network scalability. Nonetheless, this naive mapping does not guarantee a high key sharing probability. Therefore, we propose an enhanced unital-based key pre-distribution scheme providing high network scalability and good key sharing probability approximately lower bounded by 1 e    0.632. We conduct approximate analysis and simulations and compare our solution to those of existing methods for different criteria such as storage overhead, network scalability, network connectivity, average secure path length and network resiliency. Our results show that the proposed approach enhances the network scalability while providing high secure connectivity coverage and overall improved performance. Moreover, for an equal network size, our solution reduces significantly the storage overhead compared to those of existing solutions.

DOWNLOAD.


A Distributed Control Law for Load Balancing in Content Delivery Networks

ABSTRACT:

In this paper, we face the challenging issue of defining and implementing an effective law for load balancing in Content Delivery Networks (CDNs). We base our proposal on a formal study of a CDN system, carried out through the exploitation of a fluid flow model characterization of the network of servers. Starting from such characterization, we derive and prove a lemma about the network queues equilibrium. This result is then leveraged in order to devise a novel distributed and time-continuous algorithm for load balancing, which is also reformulated in a time-discrete version. The discrete formulation of the proposed balancing law is eventually discussed in terms of its actual implementation in a real-world scenario. Finally, the overall approach is validated by means of simulations.

DOWNLOAD.


SORT: A Self-Organizing Trust Model for Peer-to-Peer Systems

ABSTRACT:

Open nature of peer-to-peer systems exposes them to malicious activity. Building trust relationships among peers can mitigate attacks of malicious peers. This paper presents distributed algorithms that enable a peer to reason about trustworthiness of other peers based on past interactions and recommendations. Peers create their own trust network in their proximity by using local information available and do not try to learn global trust information. Two contexts of trust, service, and recommendation contexts are defined to measure trustworthiness in providing services and giving recommendations. Interactions and recommendations are evaluated based on importance, recentness, and peer satisfaction parameters. Additionally, recommender’s trustworthiness and confidence about a recommendation are considered while evaluating recommendations. Simulation experiments on a file sharing application show that the proposed model can mitigate attacks on 16 different malicious behavior models. In the experiments, good peers were able to form trust relationships in their proximity and isolate malicious peers.

DOWNLOAD.


Privacy Preserving Data Sharing With Anonymous ID Assignment

ABSTRACT:

An algorithm for anonymous sharing of private data among parties is developed. This technique is used iteratively to assign these nodes ID numbers ranging from 1 to N. This assignment is anonymous in that the identities received are unknown to the other members of the group. Resistance to collusion among other members is verified in an information theoretic sense when private communication channels are used. This assignment of serial numbers allows more complex data to be shared and has applications to other problems in privacy preserving data mining, collision avoidance in communications and distributed database access. The required computations are distributed without using a trusted central authority. Existing and new algorithms for assigning anonymous IDs are examined with respect to trade-offs between communication and computational requirements. The new algorithms are built on top of a secure sum data mining operation using Newton’s identities and Sturm’s theorem. An algorithm for distributed solution of certain polynomials over finite fields enhances the scalability of the algorithms. Markov chain representations are used to find statistics on the number of iterations required, and computer algebra gives closed form results for the completion rates.

DOWNLOAD.


Modeling the Pairwise Key Predistribution Scheme in the Presence of Unreliable Links

 

ABSTRACT:

We investigate the secure connectivity of wireless sensor networks under the random pairwise key predistribution scheme of Chan, Perrig, and Song. Unlike recent work carried out under the assumption of full visibility, here we assume a (simplified) communication model where unreliable wireless links are represented as independent on/off channels.We present conditions on how to scale the model parameters so that the network 1) has no secure node that is isolated and 2) is securely connected, both with high probability, when the number of sensor nodes becomes large. The results are given in the form of zero-one laws, and exhibit significant differences with corresponding results in the full-visibility case. Through simulations, these zero-one laws are shown to also hold under a more realistic communication model, namely the disk model.

DOWNLOAD.


Enforcing Secure and Privacy-Preserving Information Brokering in Distributed Information Sharing

ABSTRACT:

Today’s organizations raise an increasing need for information sharing via on-demand access. Information Brokering Systems (IBSs) have been proposed to connect large-scale loosely-federated data sources via a brokering overlay, in which the brokers make routing decisions to direct client queries to the requested data servers. Many existing IBSs assume that brokers are trusted and thus only adopt server-side access control for data confidentiality. However, privacy of data location and data consumer can still be inferred from metadata (such as query and access control rules) exchanged within the IBS, but little attention has been put on its protection. In this article, we propose a novel approach to preserve privacy of multiple stakeholders involved in the information brokering process. We are among the first to formally define two privacy attacks, namely attribute-correlation attack and inference attack, and propose two countermeasure schemes automaton segmentation and query segment encryption to securely share the routing decision making responsibility among a selected set brokering servers. With comprehensive security analysis and experimental results, we show that our approach seamlessly integrates security enforcement with query routing to provide system-wide security with insignificant overhead.

DOWNLOAD.


Page 1 of 212
RECENT PAPERS